
NAG C Library Function Document

nag_pde_parab_1d_cd (d03pfc)

1 Purpose

nag_pde_parab_1d_cd (d03pfc) integrates a system of linear or nonlinear convection-diffusion equations in
one space dimension, with optional source terms. The system must be posed in conservative form.
Convection terms are discretized using a sophisticated upwind scheme involving a user-supplied numerical
flux function based on the solution of a Riemann problem at each mesh point. The method of lines is
employed to reduce the PDEs to a system of ordinary differential equations (ODEs), and the resulting
system is solved using a backward differentiation formula (BDF) method.

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_cd (Integer npde, double *ts, double tout,

void (*pdedef)(Integer npde, double t, double x, const double u[],
const double ux[], double p[], double c[], double d[], double s[],
Integer *ires, Nag_Comm *comm),

void (*numflx)(Integer npde, double t, double x, const double uleft[],
const double uright[], double flux[], Integer *ires, Nag_Comm *comm
Nag_D03_Save *saved),

void (*bndary)(Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ibnd, double g[], Integer *ires,
Nag_Comm *comm),

double u[], Integer npts, const double x[], const double acc[], double tsmax,
double rsave[], Integer lrsave, Integer isave[], Integer lisave, Integer itask,
Integer itrace, const char *outfile, Integer *ind, Nag_Comm *comm,
Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_cd (d03pfc) integrates the system of convection-diffusion equations in conservative
form:

Xnpde
j¼1

Pi;j

@Uj

@t
þ @Fi

@x
¼ Ci

@Di

@x
þ Si, ð1Þ

or the hyperbolic convection-only system:

@Ui

@t
þ @Fi

@x
¼ 0, ð2Þ

for i ¼ 1; 2; . . . ; npde, a � x � b, t � t0, where the vector U is the set of solution values

U x; tð Þ ¼ U1 x; tð Þ; . . . ;Unpde x; tð Þ
h iT

.

The functions Pi;j, Fi, Ci and Si depend on x, t and U ; and Di depends on x, t, U and Ux, where Ux is the
spatial derivative of U . Note that Pi;j, Fi, Ci and Si must not depend on any space derivatives; and none

of the functions may depend on time derivatives. In terms of conservation laws, Fi,
Ci@Di

@x
and Si are the

convective flux, diffusion and source terms respectively.

d03 – Partial Differential Equations d03pfc

[NP3660/8] d03pfc.1

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xnpts are

the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xnpts. The initial values of the

functions U x; tð Þ must be given at t ¼ t0.

The PDEs are approximated by a system of ODEs in time for the values of Ui at mesh points using a
spatial discretization method similar to the central-difference scheme used in nag_pde_parab_1d_fd
(d03pcc), nag_pde_parab_1d_fd_ode (d03phc) and nag_pde_parab_1d_fd_ode_remesh (d03ppc), but with
the flux Fi replaced by a numerical flux, which is a representation of the flux taking into account the
direction of the flow of information at that point (i.e., the direction of the characteristics). Simple central
differencing of the numerical flux then becomes a sophisticated upwind scheme in which the correct
direction of upwinding is automatically achieved.

The numerical flux vector, F̂i say, must be calculated by you in terms of the left and right values of the
solution vector U (denoted by UL and UR respectively), at each mid-point of the mesh
xj�1=2 ¼ xj�1 þ xj

� �
=2, for j ¼ 2; 3; . . . ;npts. The left and right values are calculated by

nag_pde_parab_1d_cd (d03pfc) from two adjacent mesh points using a standard upwind technique

combined with a Van Leer slope-limiter (see LeVeque (1990)). The physically correct value for F̂i is
derived from the solution of the Riemann problem given by

@Ui

@t
þ @Fi

@y
¼ 0, ð3Þ

where y ¼ x� xj�1=2, i.e., y ¼ 0 corresponds to x ¼ xj�1=2, with discontinuous initial values U ¼ UL for
y < 0 and U ¼ UR for y > 0, using an approximate Riemann solver. This applies for either of the systems
(1) or (2); the numerical flux is independent of the functions Pi;j, Ci, Di and Si. A description of several
approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al. (1989). Roe’s scheme
(see Roe (1981)) is perhaps the easiest to understand and use, and a brief summary follows. Consider the
system of PDEs Ut þ Fx ¼ 0 or equivalently Ut þ AUx ¼ 0. Provided the system is linear in U , i.e., the

Jacobian matrix A does not depend on U , the numerical flux F̂ is given by

F̂ ¼ 1
2 FL þ FRð Þ � 1

2

Xnpde
k¼1

�k �kj jek , ð4Þ

where FL (FR) is the flux F calculated at the left (right) value of U , denoted by UL (UR); the �k are the
eigenvalues of A; the ek are the right eigenvectors of A; and the �k are defined by

UR � UL ¼
Xnpde
k¼1

�kek . ð5Þ

An example is given in Section 9.

If the system is nonlinear, Roe’s scheme requires that a linearized Jacobian is found (see Roe (1981)).

The functions Pi;j, Ci, Di and Si (but not Fi) must be specified in a function pdedef supplied by you. The

numerical flux F̂i must be supplied in a separate user-supplied function numflx. For problems in the form
(2), the actual argument d03pfp may be used for pdedef (d03pfp is included in the NAG C Library;
however, its name may be implementation-dependent: see the Users’ Note for your implementation for
details). d03pfp sets the matrix with entries Pi;j to the identity matrix, and the functions Ci, Di and Si to
zero.

The boundary condition specification has sufficient flexibility to allow for different types of problems. For
second-order problems, i.e., Di depending on Ux, a boundary condition is required for each PDE at both
boundaries for the problem to be well-posed. If there are no second-order terms present, then the
continuous PDE problem generally requires exactly one boundary condition for each PDE, that is npde
boundary conditions in total. However, in common with most discretization schemes for first-order
problems, a numerical boundary condition is required at the other boundary for each PDE. In order to be
consistent with the characteristic directions of the PDE system, the numerical boundary conditions must be
derived from the solution inside the domain in some manner (see below). Both types of boundary
conditions must be supplied by you, i.e., a total of npde conditions at each boundary point.

d03pfc NAG C Library Manual

d03pfc.2 [NP3660/8]

The position of each boundary condition should be chosen with care. In simple terms, if information is
flowing into the domain then a physical boundary condition is required at that boundary, and a numerical
boundary condition is required at the other boundary. In many cases the boundary conditions are simple,
e.g., for the linear advection equation. In general you should calculate the characteristics of the PDE
system and specify a physical boundary condition for each of the characteristic variables associated with
incoming characteristics, and a numerical boundary condition for each outgoing characteristic.

A common way of providing numerical boundary conditions is to extrapolate the characteristic variables
from the inside of the domain. Note that only linear extrapolation is allowed in this function (for greater
flexibility the function nag_pde_parab_1d_cd_ode (d03plc) should be used). For problems in which the
solution is known to be uniform (in space) towards a boundary during the period of integration then
extrapolation is unnecessary; the numerical boundary condition can be supplied as the known solution at
the boundary. Examples can be found in Section 9.

The boundary conditions must be specified in a user-supplied function bndary in the form

GL
i x; t;Uð Þ ¼ 0 at x ¼ a, i ¼ 1; 2; . . . ; npde, ð6Þ

at the left-hand boundary, and

GR
i x; t;Uð Þ ¼ 0 at x ¼ b, i ¼ 1; 2; . . . ; npde, ð7Þ

at the right-hand boundary.

Note that spatial derivatives at the boundary are not passed explicitly to the function bndary, but they can
be calculated using values of U at and adjacent to the boundaries if required. However, it should be noted
that instabilities may occur if such one-sided differencing opposes the characteristic direction at the
boundary.

The problem is subject to the following restrictions:

(i) Pi;j, Fi, Ci and Si must not depend on any space derivatives;

(ii) Pi;j, Fi, Ci, Di and Si must not depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) The evaluation of the terms Pi;j, Ci, Di and Si is done by calling the function pdedef at a point
approximately midway between each pair of mesh points in turn. Any discontinuities in these
functions must therefore be at one or more of the mesh points x1; x2; . . . ; xnpts;

(v) At least one of the functions Pi;j must be non-zero so that there is a time derivative present in the PDE
problem.

In total there are npde� npts ODEs in the time direction. This system is then integrated forwards in time
using a BDF method.

For further details of the algorithm, see Pennington and Berzins (1994) and the references therein.

4 References

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Hirsch C (1990) Numerical Computation of Internal and External Flows, Volume 2: Computational
Methods for Inviscid and Viscous Flows John Wiley

LeVeque R J (1990) Numerical Methods for Conservation Laws Birkh€ouser Verlag

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

Roe P L (1981) Approximate Riemann solvers, parameter vectors, and difference schemes J. Comput.
Phys. 43 357–372

d03 – Partial Differential Equations d03pfc

[NP3660/8] d03pfc.3

5 Arguments

1: npde – Integer Input

On entry: the number of PDEs to be solved.

Constraint: npde � 1.

2: ts – double * Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in u. Normally ts ¼ tout.

Constraint: ts < tout.

3: tout – double Input

On entry: the final value of t to which the integration is to be carried out.

4: pdedef – function, supplied by the user External Function

pdedef must evaluate the functions Pi;j, Ci, Di and Si which partially define the system of PDEs.
Pi;j, Ci and Si may depend on x, t and U ; Di may depend on x, t, U and Ux. pdedef is called
approximately midway between each pair of mesh points in turn by nag_pde_parab_1d_cd (d03pfc).
The actual argument d03pfp may be used for pdedef for problems in the form (2) (d03pfp is
included in the NAG C Library; however, its name may be implementation-dependent: see the
Users’ Note for your implementation for details).

Its specification is:

void pdedef (Integer npde, double t, double x, const double u[],
const double ux[], double p[], double c[], double d[], double s[],
Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

4: u½npde� – const double Input

On entry: u½i� 1� contains the value of the component Ui x; tð Þ, for i ¼ 1; 2; . . . ; npde.

5: ux½npde� – const double Input

On entry: ux½i� 1� contains the value of the component
@Ui x; tð Þ

@x
, for i ¼ 1; 2; . . . ;npde.

6: p½npde� npde� – double Output

On exit: p½npde� jþ i� must be set to the value of Pi;j x; t;Uð Þ, for i; j ¼ 1; 2; . . . ;npde.

7: c½npde� – double Output

On exit: c½i� 1� must be set to the value of Ci x; t;Uð Þ, for i ¼ 1; 2; . . . ; npde.

d03pfc NAG C Library Manual

d03pfc.4 [NP3660/8]

8: d½npde� – double Output

On exit: d½i� 1� must be set to the value of Di x; t;U ;Uxð Þ, for i ¼ 1; 2; . . . ;npde.

9: s½npde� – double Output

On exit: s½i� 1� must be set to the value of Si x; t;Uð Þ, for i ¼ 1; 2; . . . ;npde.

10: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_cd (d03pfc) returns to the calling function with
the error indicator set to fail.code ¼ NE_FAILED_DERIV.

11: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to pdedef.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_cd (d03pfc)
these pointers may be allocated memory by the user and initialized with various
quantities for use by pdedef when called from nag_pde_parab_1d_cd (d03pfc).

5: numflx – function, supplied by the user External Function

numflx must supply the numerical flux for each PDE given the left and right values of the solution
vector u. numflx is called approximately midway between each pair of mesh points in turn by
nag_pde_parab_1d_cd (d03pfc).

Its specification is:

void numflx (Integer npde, double t, double x, const double uleft[],
const double uright[], double flux[], Integer *ires, Nag_Comm *comm,
Nag_D03_Save *saved)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

d03 – Partial Differential Equations d03pfc

[NP3660/8] d03pfc.5

4: uleft½npde� – const double Input

On entry: uleft½i� 1� contains the left value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ; npde.

5: uright½npde� – const double Input

On entry: uright½i� 1� contains the right value of the component Ui xð Þ, for
i ¼ 1; 2; . . . ; npde.

6: flux½npde� – double Output

On exit: flux½i� 1� must be set to the numerical flux F̂i, for i ¼ 1; 2; . . . ; npde.

7: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_cd (d03pfc) returns to the calling function with
the error indicator set to fail.code ¼ NE_FAILED_DERIV.

8: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to numflx.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_cd (d03pfc)
these pointers may be allocated memory by the user and initialized with various
quantities for use by numflx when called from nag_pde_parab_1d_cd (d03pfc).

9: saved – Nag_D03_Save * Communication Structure

If numflx calls one of the approximate Riemann solvers nag_pde_parab_1d_euler_roe
(d03puc), nag_pde_parab_1d_euler_osher (d03pvc), nag_pde_parab_1d_euler_hll
(d03pwc) or nag_pde_parab_1d_euler_exact (d03pxc) then saved is used to pass data
concerning the computation to the solver. You should not change the components of
saved.

6: bndary – function, supplied by the user External Function

bndary must evaluate the functions GL
i and GR

i which describe the physical and numerical boundary
conditions, as given by (6) and (7).

Its specification is:

void bndary (Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ibnd, double g[], Integer *ires, Nag_Comm *comm)

d03pfc NAG C Library Manual

d03pfc.6 [NP3660/8]

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.

3: t – double Input

On entry: the current value of the independent variable t.

4: x½npts� – const double Input

On entry: the mesh points in the spatial direction. x½0� corresponds to the left-hand
boundary, a, and x½npts� 1� corresponds to the right-hand boundary, b.

5: u½3� npde� – const double Input

On entry: contains the value of solution components in the boundary region.

If ibnd ¼ 0, u½3� jþ i� contains the value of the component Ui x; tð Þ at x ¼ x½j� 1�, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; 3.

If ibnd 6¼ 0, u½3� jþ i� contains the value of the component Ui x; tð Þ at x ¼ x½npts� j�,
for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; 3.

6: ibnd – Integer Input

On entry: specifies which boundary conditions are to be evaluated.

ibnd ¼ 0

bndary must evaluate the left-hand boundary condition at x ¼ a.

ibnd 6¼ 0

bndary must evaluate the right-hand boundary condition at x ¼ b.

7: g½npde� – double Output

On exit: g½i� 1� must contain the ith component of either gL or gR in (6) and (7),
depending on the value of ibnd, for i ¼ 1; 2; . . . ; npde.

8: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE_USER_STOP.

ires ¼ 3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires ¼ 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires ¼ 3, then nag_pde_parab_1d_cd (d03pfc) returns to the calling function with
the error indicator set to fail.code ¼ NE_FAILED_DERIV.

9: comm – Nag_Comm * Communication Structure

Pointer to structure of type Nag_Comm; the following members are relevant to bndary.

d03 – Partial Differential Equations d03pfc

[NP3660/8] d03pfc.7

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void *. Before calling nag_pde_parab_1d_cd (d03pfc)
these pointers may be allocated memory by the user and initialized with various
quantities for use by bndary when called from nag_pde_parab_1d_cd (d03pfc).

7: u½npde� npts� – double Input/Output

On entry: u½npde� jþ i� must contain the initial value of Ui x; tð Þ at x ¼ x½j� 1� and t ¼ ts, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ;npts.

On exit: u½npde� jþ i� will contain the computed solution Ui x; tð Þ at x ¼ x½j� 1� and t ¼ ts, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ;npts.

8: npts – Integer Input

On entry: the number of mesh points in the interval a; b½ �.
Constraint: npts � 3.

9: x½npts� – const double Input

On entry: the mesh points in the space direction. x½0� must specify the left-hand boundary, a, and
x½npts� 1� must specify the right-hand boundary, b.

Constraint: x½0� < x½1� < � � � < x½npts� 1�.

10: acc½2� – const double Input

On entry: the components of acc contain the relative and absolute error tolerances used in the local
error test in the time integration.

If E i; jð Þ is the estimated error for Ui at the jth mesh point, the error test is

E i; jð Þ ¼ acc½0� � u½npde� jþ i� þ acc½1�.
Constraint: acc½0� and acc½1� � 0:0 (but not both zero).

11: tsmax – double Input

On entry: the maximum absolute step size to be allowed in the time integration. If tsmax ¼ 0:0
then no maximum is imposed.

Constraint: tsmax � 0:0.

12: rsave½lrsave� – double Communication Array

If ind ¼ 0, rsave need not be set on entry.

If ind ¼ 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

13: lrsave – Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag_pde_parab_1d_cd (d03pfc) is called.

Constraint: lrsave � 11þ 9� npdeð Þ � npde� nptsþ 32þ 3� npdeð Þ � npdeþ 7�
nptsþ 54.

14: isave½lisave� – Integer Communication Array

If ind ¼ 0, isave need not be set on entry.

If ind ¼ 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration. In particular:

d03pfc NAG C Library Manual

d03pfc.8 [NP3660/8]

isave½0�
Contains the number of steps taken in time.

isave½1�
Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave½2�
Contains the number of Jacobian evaluations performed by the time integrator.

isave½3�
Contains the order of the last backward differentiation formula method used.

isave½4�
Contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU
decomposition of the Jacobian matrix.

15: lisave – Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag_pde_parab_1d_cd (d03pfc) is called.

Constraint: lisave � npde� nptsþ 24.

16: itask – Integer Input

On entry: the task to be performed by the ODE integrator.

itask ¼ 1

Normal computation of output values u at t ¼ tout (by overshooting and interpolating).

itask ¼ 2

Take one step in the time direction and return.

itask ¼ 3

Stop at first internal integration point at or beyond t ¼ tout.

Constraint: 1 � itask � 3.

17: itrace – Integer Input

On entry: the level of trace information required from nag_pde_parab_1d_cd (d03pfc) and the
underlying ODE solver. itrace may take the value �1, 0, 1, 2, or 3.

itrace ¼ �1

No output is generated.

itrace ¼ 0

Only warning messages from the PDE solver are printed .

itrace > 0

Output from the underlying ODE solver is printed . This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

If itrace < �1, then �1 is assumed and similarly if itrace > 3, then 3 is assumed.

The advisory messages are given in greater detail as itrace increases.

d03 – Partial Differential Equations d03pfc

[NP3660/8] d03pfc.9

18: outfile – const char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

19: ind – Integer * Input/Output

On entry: must be set to 0 or 1.

ind ¼ 0

Starts or restarts the integration in time.

ind ¼ 1

Continues the integration after an earlier exit from the function. In this case, only the
arguments tout and fail should be reset between calls to nag_pde_parab_1d_cd (d03pfc).

Constraint: 0 � ind � 1.

On exit: ind ¼ 1.

20: comm – Nag_Comm * Communication Structure

The NAG communication argument (see Section 2.2.1.1 of the Essential Introduction).

21: saved – Nag_D03_Save * Communication Structure

Note: saved is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).

saved must remain unchanged following a previous call to a d03 function and prior to any
subsequent call to a d03 function.

22: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but small changes in acc are unlikely to result in a changed solution.
acc½0� ¼ valueh i, acc½1� ¼ valueh i.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires ¼ 3 in pdedef, numflx, or bndary.

NE_FAILED_START

Values in acc are too small to start integration: acc½0� ¼ valueh i, acc½1� ¼ valueh i.

NE_FAILED_STEP

Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts ¼ valueh i.
Underlying ODE solver cannot make further progress from the point ts with the supplied values of
acc. ts ¼ valueh i, acc½0� ¼ valueh i, acc½1� ¼ valueh i.

d03pfc NAG C Library Manual

d03pfc.10 [NP3660/8]

NE_INCOMPAT_PARAM

On entry, acc½0� and acc½1� are both zero.

NE_INT

On entry, ind is not equal to 0 or 1: ind ¼ valueh i.
ires set to an invalid value in call to pdedef, numflx, or bndary.

On entry, itask is not equal to 1, 2, or 3: itask ¼ valueh i.
On entry, npde ¼ valueh i.
Constraint: npde � 1.

On entry, npts ¼ valueh i.
Constraint: npts � 3.

NE_INT_2

On entry, lisave is too small: lisave ¼ valueh i. Minimum possible dimension: valueh i.
On entry, lrsave is too small: lrsave ¼ valueh i. Minimum possible dimension: valueh i.

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_NOT_CLOSE_FILE

Cannot close file valueh i.

NE_NOT_STRICTLY_INCREASING

On entry, mesh points x appear to be badly ordered: i ¼ valueh i, x½i� 1� ¼ valueh i, j ¼ valueh i,
x½j� 1� ¼ valueh i.

NE_NOT_WRITE_FILE

Cannot open file valueh i for writing.

NE_REAL

On entry, acc½0� < 0:0: acc½0� ¼ valueh i.
On entry, acc½1� < 0:0: acc½1� ¼ valueh i.
On entry, tsmax ¼ valueh i.
Constraint: tsmax � 0:0.

NE_REAL_2

On entry, tout� ts is too small: tout ¼ valueh i, ts ¼ valueh i.
On entry, tout � ts: tout ¼ valueh i, ts ¼ valueh i.

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

The functions P, D, or C appear to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires ¼ 2 has been set in pdedef, numflx, or bndary.
Integration is successful as far as ts: ts ¼ valueh i.

d03 – Partial Differential Equations d03pfc

[NP3660/8] d03pfc.11

7 Accuracy

nag_pde_parab_1d_cd (d03pfc) controls the accuracy of the integration in the time direction but not the
accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh points
and on their distribution in space. In the time integration only the local error over a single step is
controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the
effect of varying the components of the accuracy argument, acc.

8 Further Comments

nag_pde_parab_1d_cd (d03pfc) is designed to solve systems of PDEs in conservative form, with optional
source terms which are independent of space derivatives, and optional second-order diffusion terms. The
use of the function to solve systems which are not naturally in this form is discouraged, and you are
advised to use one of the central-difference schemes for such problems.

You should be aware of the stability limitations for hyperbolic PDEs. For most problems with small error
tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum time
step should be imposed using tsmax. It is worth experimenting with this argument, particularly if the
integration appears to progress unrealistically fast (with large time steps). Setting the maximum time step
to the minimum mesh size is a safe measure, although in some cases this may be too restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms stable
and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting non-physical
speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is essential to
employ a very fine mesh for problems with source terms and discontinuities, and to check for non-physical
propagation speeds by comparing results for different mesh sizes. Further details and an example can be
found in Pennington and Berzins (1994).

The time taken depends on the complexity of the system and on the accuracy requested.

9 Example

For this function two examples are presented. There is a single example program for
nag_pde_parab_1d_cd (d03pfc), with a main program and the code to solve the two example problems
is given in the functions ex1 and ex2.

Example 1 (ex1)

This example is a simple first-order system which illustrates the calculation of the numerical flux using
Roe’s approximate Riemann solver, and the specification of numerical boundary conditions using
extrapolated characteristic variables. The PDEs are

@U 1

@t
þ @U1

@x
þ @U 2

@x
¼ 0,

@U 2

@t
þ 4

@U1

@x
þ @U 2

@x
¼ 0,

for x 2 0; 1½ � and t � 0. The PDEs have an exact solution given by

U 1 x; tð Þ ¼ 1
2 exp xþ tð Þ þ exp x� 3tð Þf g þ 1

4 sin 2� x� 3tð Þ2
� �

� sin 2� xþ tð Þ2
� �n o

þ 2t2 � 2xt,

U 2 x; tð Þ ¼ exp x� 3tð Þ � exp xþ tð Þ þ 1
2 sin 2� x� 3tð Þ2

� �
þ sin 2� x� 3tð Þ2

� �n o
þ x2 þ 5t2 � 2xt.

The initial conditions are given by the exact solution. The characteristic variables are 2U 1 þ U 2 and
2U 1 � U 2 corresponding to the characteristics given by dx=dt ¼ 3 and dx=dt ¼ �1 respectively. Hence a
physical boundary condition is required for 2U1 þ U2 at the left-hand boundary, and for 2U1 � U2 at the
right-hand boundary (corresponding to the incoming characteristics); and a numerical boundary condition
is required for 2U 1 � U 2 at the left-hand boundary, and for 2U 1 þ U 2 at the right-hand boundary
(outgoing characteristics). The physical boundary conditions are obtained from the exact solution, and the
numerical boundary conditions are calculated by linear extrapolation of the appropriate characteristic
variable. The numerical flux is calculated using Roe’s approximate Riemann solver: Using the notation in
Section 3, the flux vector F and the Jacobian matrix A are

d03pfc NAG C Library Manual

d03pfc.12 [NP3660/8]

F ¼ U 1 þ U 2

4U 1 þ U 2

� �
and A ¼ 1 1

4 1

� �
,

and the eigenvalues of A are 3 and �1 with right eigenvectors 1 2½ �T and �1 2½ �T respectively. Using
equation (4) the �k are given by

U 1R � U 1L

U 2R � U 2L

� �
¼ �1

1
2

� �
þ �2

�1
2

� �
,

that is

�1 ¼ 1
4 2U1R � 2U 1L þ U 2R � U 2Lð Þ and �2 ¼ 1

4 �2U 1R þ 2U 1L þ U2R � U2Lð Þ.

FL is given by

FL ¼
U 1L þ U2L

4U 1L þ U2L

� �
,

and similarly for FR. From equation (4), the numerical flux vector is

F̂ ¼ 1
2

U 1L þ U 2L þ U1R þ U2R

4U 1L þ U 2L þ 4U1R þ U2R

� �
� 1

2�1 3j j 1
2

� �
� 1

2�2 �1j j �1
2

� �
,

that is

F̂ ¼ 1
2

3U1L � U 1R þ 3
2U2L þ 1

2U2R

6U 1L þ 2U 1R þ 3U 2L � U2R

� �
.

Example 2 (ex2)

This example is an advection-diffusion equation in which the flux term depends explicitly on x:

@U

@t
þ x

@U

@x
¼ �

@2U

@x2
,

for x 2 �1; 1½ � and 0 � t � 10. The argument � is taken to be 0:01. The two physical boundary
conditions are U �1; tð Þ ¼ 3:0 and U 1; tð Þ ¼ 5:0 and the initial condition is U x; 0ð Þ ¼ xþ 4. The
integration is run to steady state at which the solution is known to be U ¼ 4 across the domain with a
narrow boundary layer at both boundaries. In order to write the PDE in conservative form, a source term
must be introduced, i.e.,

@U

@t
þ @ xUð Þ

@x
¼ �

@2U

@x2
þ U .

As in Example 1, the numerical flux is calculated using the Roe approximate Riemann solver. The
Riemann problem to solve locally is

@U

@t
þ @ xUð Þ

@x
¼ 0.

The x in the flux term is assumed to be constant at a local level, and so using the notation in Section 3,
F ¼ xU and A ¼ x. The eigenvalue is x and the eigenvector (a scalar in this case) is 1. The numerical
flux is therefore

F̂ ¼ xUL if x � 0,
xUR if x < 0.

�

9.1 Program Text

/* nag_pde_parab_1d_cd (d03pfc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
* Mark 7b revised, 2004.
*/

d03 – Partial Differential Equations d03pfc

[NP3660/8] d03pfc.13

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>
#include <math.h>

int ex1(void);
int ex2(void);
static void pdedef(Integer, double, double, const double[],

const double[], double[], double[], double[],
double[], Integer *, Nag_Comm *);

static void bndary1(Integer, Integer, double, const double[],
const double[], Integer, double[], Integer *,
Nag_Comm *);

static void bndary2(Integer, Integer, double, const double[],
const double[], Integer, double[], Integer *,
Nag_Comm *);

static void numflx1(Integer, double, double, const double[],
const double[], double[], Integer *, Nag_Comm *,
Nag_D03_Save *);

static void numflx2(Integer, double, double, const double[],
const double[], double[], Integer *, Nag_Comm *,
Nag_D03_Save *);

static void exact(double, double *, Integer, const double *, Integer);

int main(void)
{

Vprintf("nag_pde_parab_1d_cd (d03pfc) Example Program Results\n");
ex1();
ex2();
return 0;

}

#define U(I,J) u[npde*((J)-1)+(I)-1]
#define P(I,J) p[npde*((J)-1)+(I)-1]
#define UE(I,J) ue[npde*((J)-1)+(I)-1]

int ex1(void)
{

double tout, ts, tsmax;
const Integer npde=2, npts=101, outpts=7, inter=20, lisave=npde*npts+24,

lrsave=(11+9*npde)*npde*npts+(32+3*npde)*npde+7*npts+54;
Integer exit_status, i, ind, it, itask, itrace, j, nop;
double *acc=0, *rsave=0, *u=0, *ue=0, *x=0, *xout=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

/* Allocate memory */

if (!(acc = NAG_ALLOC(2, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(u = NAG_ALLOC(npde*npts, double)) ||
!(ue = NAG_ALLOC(npde*outpts, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xout = NAG_ALLOC(outpts, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

Vprintf("\n\nExample 1\n\n\n");
INIT_FAIL(fail);
exit_status = 0;

itrace = 0;

d03pfc NAG C Library Manual

d03pfc.14 [NP3660/8]

acc[0] = 1.0e-4;
acc[1] = 1.0e-5;
tsmax = 0.0;

Vprintf(" npts = %4ld acc[0] = %10.3e acc[1] = %10.3e\n\n",
npts, acc[0], acc[1]);

Vprintf(" x Approx u Exact u Approx v Exact v\n");

/* Initialise mesh */

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);

/* Set initial values */

ts = 0.0;
exact(ts, u, npde, x, npts);

ind = 0;
itask = 1;

for (it = 1; it <= 2; ++it)
{

tout = 0.1*it;

/* nag_pde_parab_1d_cd (d03pfc).
* General system of convection-diffusion PDEs with source
* terms in conservative form, method of lines, upwind
* scheme using numerical flux function based on Riemann
* solver, one space variable
*/

nag_pde_parab_1d_cd(npde, &ts, tout, d03pfp, numflx1, bndary1, u, npts,
x, acc, tsmax, rsave, lrsave, isave, lisave, itask,
itrace, 0, &ind, &comm, &saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_pde_parab_1d_cd (d03pfc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

/* Set output points */

nop = 0;
for (i = 0; i < 101; i += inter)

{
++nop;
xout[nop - 1] = x[i];

}

Vprintf("\n t = %6.3f\n\n", ts);

/* Check against exact solution */

exact(tout, ue, npde, xout, nop);

for (i = 1; i <= nop; ++i)
{

j = (i-1)*inter+1;
Vprintf(" %9.4f %9.4f %9.4f %9.4f %9.4f\n",

xout[i-1], U(1,j), UE(1,i), U(2,j), UE(2,i));
}

}
Vprintf("\n");
Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations = %6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:

d03 – Partial Differential Equations d03pfc

[NP3660/8] d03pfc.15

if (acc) NAG_FREE(acc);
if (rsave) NAG_FREE(rsave);
if (u) NAG_FREE(u);
if (ue) NAG_FREE(ue);
if (x) NAG_FREE(x);
if (xout) NAG_FREE(xout);
if (isave) NAG_FREE(isave);

return exit_status;
}
static void bndary1(Integer npde, Integer npts, double t, const double x[],

const double u[], Integer ibnd, double g[], Integer *ires,
Nag_Comm *comm)

{
double c, exu1, exu2;
double ue[2];

if (ibnd == 0)
{

exact(t, ue, npde, &x[0], 1);
c = (x[1] - x[0])/(x[2] - x[1]);
exu1 = (c + 1.0)*U(1, 2) - c*U(1, 3);
exu2 = (c + 1.0)*U(2, 2) - c*U(2, 3);
g[0] = 2.0*U(1, 1) + U(2, 1) - 2.0*UE(1, 1) - UE(2, 1);
g[1] = 2.0*U(1, 1) - U(2, 1) - 2.0*exu1 + exu2;

} else {
exact(t, ue, npde, &x[npts-1], 1);
c = (x[npts-1] - x[npts - 2])/(x[npts - 2] - x[npts - 3]);
exu1 = (c + 1.0)*U(1, 2) - c*U(1, 3);
exu2 = (c + 1.0)*U(2, 2) - c*U(2, 3);
g[0] = 2.0*U(1, 1) - U(2, 1) - 2.0*UE(1, 1) + UE(2, 1);
g[1] = 2.0*U(1, 1) + U(2, 1) - 2.0*exu1 - exu2;

}

return;
}
static void numflx1(Integer npde, double t, double x, const double uleft[],

const double uright[], double flux[],
Integer *ires, Nag_Comm *comm, Nag_D03_Save *saved)

{
flux[0] = 0.5*(-uright[0] + 3.0*uleft[0] + 0.5*uright[1] + 1.5*uleft[1]);
flux[1] = 0.5*(2.0*uright[0] + 6.0*uleft[0] - uright[1] + uleft[1]*3.);

return;
}
static void exact(double t, double *u, Integer npde,

const double *x, Integer npts)
{

double x1, x2, pi;
Integer i;

pi = nag_pi;

/* Exact solution (for comparison and b.c. purposes) */

for (i = 1; i <= npts; ++i)
{

x1 = x[i-1] + t;
x2 = x[i-1] - 3.0*t;

U(1,i) = 0.5*(exp(x1) + exp(x2))
+ 0.25*(sin(2.0*pi*(x2*x2)) - sin(2.0*pi*(x1*x1)))
+ 2.0*t*t - 2.0*x[i-1]*t;

U(2,i) = exp(x2) - exp(x1) +
0.5*(sin(2.0*pi*(x2*x2)) + sin(2.0*pi*(x1*x1))) +
x[i-1]*x[i-1] + 5.0*t*t - 2.0*x[i-1]*t;

}
return;

}

d03pfc NAG C Library Manual

d03pfc.16 [NP3660/8]

int ex2(void)
{

double tout, ts, tsmax;
const Integer npde=1, npts=151, outpts=7, lisave=npde*npts+24,

lrsave=(11+9*npde)*npde*npts+(32+3*npde)*npde+7*npts+54;
Integer exit_status=0, i, ind, it, itask, itrace;
double *acc=0, *rsave=0, *u=0, *x=0, *xout=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

/* Allocate memory */

if (!(acc = NAG_ALLOC(2, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(u = NAG_ALLOC(npde*npts, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xout = NAG_ALLOC(outpts, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

Vprintf("\n\nExample 2\n\n\n");
INIT_FAIL(fail);

itrace = 0;
acc[0] = 1e-5;
acc[1] = 1e-5;

Vprintf(" npts = %4ld acc[0] = %10.3e acc[1] = %10.3e\n\n",
npts, acc[0], acc[1]);

/* Initialise mesh */

for (i = 0; i < npts; ++i) x[i] = -1.0 + 2.0*i/(npts-1.0);

/* Set initial values */

for (i = 1; i <= npts; ++i) U(1, i) = x[i-1] + 4.0;

ind = 0;
itask = 1;
tsmax = 0.02;

/* Set output points */

xout[0] = x[0];
xout[1] = x[3];
xout[2] = x[36];
xout[3] = x[75];
xout[4] = x[111];
xout[5] = x[147];
xout[6] = x[150];

Vprintf(" x ");

for (i = 0; i < 7; ++i)
{

Vprintf("%9.4f", xout[i]);
Vprintf((i+1)%7 == 0 || i == 6 ?"\n":"");

}
Vprintf("\n");

/* Loop over output value of t */

d03 – Partial Differential Equations d03pfc

[NP3660/8] d03pfc.17

ts = 0.0;
tout = 1.0;
for (it = 0; it < 2; ++it)

{
if (it == 1) tout = 10.0;

/* nag_pde_parab_1d_cd (d03pfc), see above. */
nag_pde_parab_1d_cd(npde, &ts, tout, pdedef, numflx2, bndary2, u, npts,

x, acc, tsmax, rsave, lrsave, isave, lisave, itask,
itrace, 0, &ind, &comm, &saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_pde_parab_1d_cd (d03pfc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

Vprintf(" t = %6.3f\n", ts);
Vprintf(" u %9.4f%9.4f%9.4f%9.4f%9.4f%9.4f%9.4f\n\n",

U(1,1), U(1,4), U(1,37), U(1,76),
U(1,112), U(1,148), U(1,151));

}

Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations = %6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:
if (acc) NAG_FREE(acc);
if (rsave) NAG_FREE(rsave);
if (u) NAG_FREE(u);
if (x) NAG_FREE(x);
if (xout) NAG_FREE(xout);
if (isave) NAG_FREE(isave);

return exit_status;
}
static void pdedef(Integer npde, double t, double x, const double u[],

const double ux[], double p[], double
c[], double d[], double s[],
Integer *ires, Nag_Comm *comm)

{
P(1, 1) = 1.0;
c[0] = 0.01;
d[0] = ux[0];
s[0] = u[0];

return;
}

static void bndary2(Integer npde, Integer npts, double t,
const double x[],

const double u[],
Integer ibnd,
double g[],
Integer *ires,
Nag_Comm *comm)

{
if (ibnd == 0)

{
g[0] = U(1, 1) - 3.0;

} else {
g[0] = U(1, 1) - 5.0;

}
return;

}
static void numflx2(Integer npde, double t, double x, const double uleft[],

const double uright[], double flux[],

d03pfc NAG C Library Manual

d03pfc.18 [NP3660/8]

Integer *ires, Nag_Comm *comm, Nag_D03_Save *saved)
{

if (x >= 0.0)
{

flux[0] = x * uleft[0];
} else {

flux[0] = x * uright[0];
}

return;
}

9.2 Program Data

None.

9.3 Program Results

nag_pde_parab_1d_cd (d03pfc) Example Program Results

Example 1

npts = 101 acc[0] = 1.000e-04 acc[1] = 1.000e-05

x Approx u Exact u Approx v Exact v

t = 0.100

0.0000 1.0615 1.0613 -0.0155 -0.0150
0.2000 0.9892 0.9891 -0.0953 -0.0957
0.4000 1.0826 1.0826 0.1180 0.1178
0.6000 1.7001 1.7001 -0.0751 -0.0746
0.8000 2.3959 2.3966 -0.2453 -0.2458
1.0000 2.1029 2.1025 0.3760 0.3753

t = 0.200

0.0000 1.0957 1.0956 0.0368 0.0370
0.2000 1.0808 1.0811 0.1826 0.1828
0.4000 1.1102 1.1100 -0.2935 -0.2938
0.6000 1.6461 1.6454 -1.2921 -1.2908
0.8000 1.7913 1.7920 -0.8510 -0.8525
1.0000 2.2050 2.2050 -0.4222 -0.4221

Number of integration steps in time = 56
Number of function evaluations = 229
Number of Jacobian evaluations = 7
Number of iterations = 143

Example 2

npts = 151 acc[0] = 1.000e-05 acc[1] = 1.000e-05

x -1.0000 -0.9600 -0.5200 0.0000 0.4800 0.9600 1.0000

t = 1.000
u 3.0000 3.6221 3.8087 4.0000 4.1766 4.3779 5.0000

t = 10.000
u 3.0000 3.9592 4.0000 4.0000 4.0000 4.0408 5.0000

Number of integration steps in time = 503
Number of function evaluations = 1190
Number of Jacobian evaluations = 28
Number of iterations = 1035

d03 – Partial Differential Equations d03pfc

[NP3660/8] d03pfc.19

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
- 1 . 5

- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

X

U 1

U 2

×××

×××

Figure 1
Solution to Example 1

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

x

U

t=1.0

t=10.0

Figure 2
Solution to Example 2

d03pfc NAG C Library Manual

d03pfc.20 (last) [NP3660/8]

	d03pfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	npde
	ts
	tout
	pdedef
	npde
	t
	x
	u
	ux
	p
	c
	d
	s
	ires
	comm
	user
	iuser
	p

	numflx
	npde
	t
	x
	uleft
	uright
	flux
	ires
	comm
	user
	iuser
	p

	saved

	bndary
	npde
	npts
	t
	x
	u
	ibnd
	g
	ires
	comm
	user
	iuser
	p

	u
	npts
	x
	acc
	tsmax
	rsave
	lrsave
	isave
	lisave
	itask
	itrace
	outfile
	ind
	comm
	saved
	fail

	6 Error Indicators and Warnings
	NE_ACC_IN_DOUBT
	NE_BAD_PARAM
	NE_FAILED_DERIV
	NE_FAILED_START
	NE_FAILED_STEP
	NE_INCOMPAT_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_NOT_CLOSE_FILE
	NE_NOT_STRICTLY_INCREASING
	NE_NOT_WRITE_FILE
	NE_REAL
	NE_REAL_2
	NE_SING_JAC
	NE_TIME_DERIV_DEP
	NE_USER_STOP

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

